摘要:In this paper, we are interested in the approximation of a stochastic generalized Swift-Hohenberg equation with quadratic and cubic nonlinearity by using the natural separation of time-scales near a change of stability. The main results show that the behavior of the SPDE is well approximated by a stochastic ordinary differential equation describing the amplitude of the dominant mode. The cubic and the quadratic nonlinearities lead to cubic nonlinearities of opposite sign. Here we study the interesting case, where both contributions cancel and in the right scaling a quintic nonlinearity emerges in the amplitude equation. Also, we give a brief indication of how the effect of additive degenerate noise (i.e. noise that does not act directly to the dominant mode) might lead to the stabilization of the trivial solution.