首页    期刊浏览 2025年09月21日 星期日
登录注册

文章基本信息

  • 标题:Basins of attraction of period-two solutions of monotone difference equations
  • 本地全文:下载
  • 作者:Arzu Bilgin ; Mustafa RS Kulenović ; Esmir Pilav
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2016
  • 卷号:2016
  • 期号:1
  • 页码:74
  • DOI:10.1186/s13662-016-0801-y
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We investigate the global character of the difference equation of the form x n + 1 = f ( x n , x n − 1 ) , n = 0 , 1 , … $$x_{n+1} = f(x_{n}, x_{n-1}),\quad n=0,1, \ldots $$ with several period-two solutions, where f is increasing in all its variables. We show that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium solutions or period-two solutions are in fact the global stable manifolds of neighboring saddle or non-hyperbolic equilibrium solutions or period-two solutions. As an application of our results we give the global dynamics of three feasible models in population dynamics which includes the nonlinearity of Beverton-Holt and sigmoid Beverton-Holt types.
  • 关键词:attractivity ; basin ; difference equation ; invariant manifolds ; period-two solutions
国家哲学社会科学文献中心版权所有