首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Initial value problem for nonlinear fractional differential equations with sequential fractional derivative
  • 本地全文:下载
  • 作者:Hailong Ye ; Rui Huang
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2015
  • 卷号:2015
  • 期号:1
  • 页码:291
  • DOI:10.1186/s13662-015-0620-6
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper deals with the following initial value problem for nonlinear fractional differential equation with sequential fractional derivative: { D 0 α 2 c ( c D 0 α 1 y ( x ) p − 2 c D 0 α 1 y ( x ) ) = f ( x , y ( x ) ) , x > 0 , y ( 0 ) = b 0 , c D 0 α 1 y ( 0 ) = b 1 , $$ \left \{ \textstyle\begin{array}{l} {}^{\mathrm{c}}D_(^{\alpha_,} (\vert {}^{\mathrm{c}}D_(^{\alpha_)}y(x)\vert ^{p-2} \, {}^{\mathrm{c}}D_(^{\alpha_)}y(x) )=f(x,y(x)), \quad x>0, \\ y(0)=b_(,\qquad {}^{\mathrm{c}}D_(^{\alpha_)}y(0)=b_) , \end{array}\displaystyle \right . $$ where D 0 α 1 c ${}^{\mathrm{c}}D_(^{\alpha_)}$ , D 0 α 2 c ${}^{\mathrm{c}}D_(^{\alpha_,}$ are Caputo fractional derivatives, 0 1 $p>1$ . We establish the existence and uniqueness of solutions in C ( [ 0 , ∞ ) ) $C([0,\infty))$ by using the Banach fixed point theorem and an inductive method. An example is presented to illustrate the results in this paper. In addition, existence and uniqueness of solutions of ordinary differential equations with p-Laplacian follow as a special case of our results.
  • 关键词:existence and uniqueness ; Caputo fractional derivative ; sequential fractional derivative
国家哲学社会科学文献中心版权所有