摘要:In this paper, we apply asymptotic behavior on Mittag-Leffler functions E α ( z ) $\mathbb{E}_{\alpha}(z)$ and E α , α ( z ) $\mathbb{E}_{\alpha,\alpha}(z)$ for z > 0 $z>0$ to discuss exp-type Ulam-Hyers stability of D t α c x ( t ) = λ x ( t ) + f ( t , x ( t ) ) ${}^{\mathrm{c}} D_{t}^{\alpha}x(t)=\lambda x(t)+f(t,x(t))$ for the case λ > 0 $\lambda>0$ on a finite time interval [ 0 , 1 ] $[0,1]$ and an unbounded interval ( 1 , ∞ ) $(1,\infty)$ .