摘要:In this paper, we consider a generalized neutral Rayleigh equation with variable parameter ( x ( t ) − c ( t ) x ( t − δ ( t ) ) ″ + f ( t , x ′ ( t ) ) + g ( t , x ( t − τ ( t ) ) ) = e ( t ) , $$(x(t)-c(t)x\bigl(t-\delta(t)\bigr)''+f \bigl(t,x'(t)\bigr)+g\bigl(t,x\bigl(t-\tau(t)\bigr)\bigr)=e(t), $$ where c ( t ) ≠ 1 $ c(t) \neq1$ , c , δ ∈ C 1 ( R , R ) $c,~\delta\in C^)(\mathbb{R},\mathbb{R})$ and c, δ are ω-periodic functions for some ω > 0 $\omega> 0$ . By applications of coincidence degree theory and some analysis skills, sufficient conditions for the existence of periodic solution is established.