首页    期刊浏览 2025年09月21日 星期日
登录注册

文章基本信息

  • 标题:Global asymptotic stability for quadratic fractional difference equation
  • 本地全文:下载
  • 作者:Mark DiPippo ; Ed J Janowski ; Mustafa RS Kulenović
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2015
  • 卷号:2015
  • 期号:1
  • 页码:179
  • DOI:10.1186/s13662-015-0525-4
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Consider the difference equation x n + 1 = α + ∑ i = 0 k a i x n − i + ∑ i = 0 k ∑ j = i k a i j x n − i x n − j β + ∑ i = 0 k b i x n − i + ∑ i = 0 k ∑ j = i k b i j x n − i x n − j , n = 0 , 1 , … , $$x_{n+1} = \frac{\alpha+ \sum_{i=0}^{k} a_{i} x_{n-i} + \sum_{i=0}^{k} \sum_{j=i}^{k} a_{i j} x_{n-i} x_{n-j} }{\beta+ \sum_{i=0}^{k} b_{i} x_{n-i} + \sum_{i=0}^{k} \sum_{j=i}^{k} b_{ij} x_{n-i} x_{n-j}}, \quad n=0,1, \ldots, $$ where all parameters α, β, a i $a_{i}$ , b i $b_{i}$ , a i j $a_{ij}$ , b i j $b_{ij}$ , i , j = 0 , 1 , … , k $i,j=0,1,\ldots, k$ , and the initial conditions x i $x_{i}$ , i ∈ { − k , … , 0 } $i \in\{-k, \ldots, 0 \}$ , are nonnegative. We investigate the asymptotic behavior of the solutions of the considered equation. We give simple explicit conditions for the global stability and global asymptotic stability of the zero or positive equilibrium of this equation.
  • 关键词:attractivity ; difference equations ; rational ; stability
国家哲学社会科学文献中心版权所有