首页    期刊浏览 2025年07月16日 星期三
登录注册

文章基本信息

  • 标题:Global dynamics of cubic second order difference equation in the first quadrant
  • 本地全文:下载
  • 作者:Jasmin Bektešević ; Mustafa RS Kulenović ; Esmir Pilav
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2015
  • 卷号:2015
  • 期号:1
  • 页码:176
  • DOI:10.1186/s13662-015-0503-x
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We investigate the global behavior of a cubic second order difference equation x n + 1 = A x n 3 + B x n 2 x n − 1 + C x n x n − 1 2 + D x n − 1 3 + E x n 2 + F x n x n − 1 + G x n − 1 2 + H x n + I x n − 1 + J $x_{n+1}=Ax_{n}^"+ Bx_{n}^,x_{n-1}+Cx_{n}x_{n-1}^,+Dx_{n-1}^"+Ex_{n}^, +Fx_{n}x_{n-1}+Gx_{n-1}^,+Hx_{n}+Ix_{n-1}+J$ , n = 0 , 1 , … $n=0,1,\ldots$ , with nonnegative parameters and initial conditions. We establish the relations for the local stability of equilibriums and the existence of period-two solutions. We then use this result to give global behavior results for special ranges of the parameters and determine the basins of attraction of all equilibrium points. We give a class of examples of second order difference equations with quadratic terms for which a discrete version of the 16th Hilbert problem does not hold. We also give the class of second order difference equations with quadratic terms for which the Julia set can be found explicitly and represent a planar quadratic curve.
  • 关键词:basin of attraction ; competitive map ; global stable manifold ; monotonicity ; period-two solution
国家哲学社会科学文献中心版权所有