首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Existence of positive solutions for a system of Caputo fractional difference equations depending on parameters
  • 本地全文:下载
  • 作者:Shugui Kang ; Huiqin Chen ; Jianmin Guo
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2015
  • 卷号:2015
  • 期号:1
  • 页码:138
  • DOI:10.1186/s13662-015-0466-y
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We consider the existence of at least two positive solutions for a system of Caputo fractional difference equations Δ C ν j y j ( t ) = − λ j f j ( y 1 ( t + ν 1 − 1 ) , … , y n ( t + ν n − 1 ) ) $\Delta _{{\mathrm{C}}}^{\nu _{j}}y_{j}(t)=-\lambda_{j}f_{j}(y_)(t+\nu_)-1), \ldots,y_{n}(t+\nu_{n}-1))$ , subject to boundary conditions y j ( ν j − 3 ) = Δ y j ( ν j + b ) = Δ 2 y j ( ν j − 3 ) = 0 $y_{j}(\nu_{j}-3)=\Delta y_{j}(\nu_{j}+b)=\Delta ^, y_{j}(\nu_{j}-3)=0$ , where 2 < ν j ⩽ 3 $2<\nu_{j}\leqslant3$ , j = 1 , … , n $j=1,\ldots,n$ . We use the Krasnosel’skiĭ fixed point theorem to obtain the sufficient conditions of the existence of two positive solutions for this boundary value problem of Caputo fractional difference equations depending on parameters.
  • 关键词:Caputo fractional difference ; boundary value problem ; fixed point theory ; positive solution
国家哲学社会科学文献中心版权所有