摘要:We consider the existence of at least two positive solutions for a system of Caputo fractional difference equations Δ C ν j y j ( t ) = − λ j f j ( y 1 ( t + ν 1 − 1 ) , … , y n ( t + ν n − 1 ) ) $\Delta _{{\mathrm{C}}}^{\nu _{j}}y_{j}(t)=-\lambda_{j}f_{j}(y_)(t+\nu_)-1), \ldots,y_{n}(t+\nu_{n}-1))$ , subject to boundary conditions y j ( ν j − 3 ) = Δ y j ( ν j + b ) = Δ 2 y j ( ν j − 3 ) = 0 $y_{j}(\nu_{j}-3)=\Delta y_{j}(\nu_{j}+b)=\Delta ^, y_{j}(\nu_{j}-3)=0$ , where 2 < ν j ⩽ 3 $2<\nu_{j}\leqslant3$ , j = 1 , … , n $j=1,\ldots,n$ . We use the Krasnosel’skiĭ fixed point theorem to obtain the sufficient conditions of the existence of two positive solutions for this boundary value problem of Caputo fractional difference equations depending on parameters.
关键词:Caputo fractional difference ; boundary value problem ; fixed point theory ; positive solution