首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application
  • 本地全文:下载
  • 作者:Xiao-Feng Yang ; Zi-Chen Deng ; Yi Wei
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2015
  • 卷号:2015
  • 期号:1
  • 页码:117
  • DOI:10.1186/s13662-015-0452-4
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The Riccati-Bernoulli sub-ODE method is firstly proposed to construct exact traveling wave solutions, solitary wave solutions, and peaked wave solutions for nonlinear partial differential equations. A Bäcklund transformation of the Riccati-Bernoulli equation is given. By using a traveling wave transformation and the Riccati-Bernoulli equation, nonlinear partial differential equations can be converted into a set of algebraic equations. Exact solutions of nonlinear partial differential equations can be obtained by solving a set of algebraic equations. By applying the Riccati-Bernoulli sub-ODE method to the Eckhaus equation, the nonlinear fractional Klein-Gordon equation, the generalized Ostrovsky equation, and the generalized Zakharov-Kuznetsov-Burgers equation, traveling solutions, solitary wave solutions, and peaked wave solutions are obtained directly. Applying a Bäcklund transformation of the Riccati-Bernoulli equation, an infinite sequence of solutions of the above equations is obtained. The proposed method provides a powerful and simple mathematical tool for solving some nonlinear partial differential equations in mathematical physics.
  • 关键词:Riccati-Bernoulli sub-ODE method ; Bäcklund transformation ; traveling wave solution ; solitary wave solution ; peaked wave solution
国家哲学社会科学文献中心版权所有