首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Existence and uniqueness of positive and nondecreasing solutions for a class of fractional boundary value problems involving the p -Laplacian operator
  • 本地全文:下载
  • 作者:Serkan Araci ; Erdoğan Şen ; Mehmet Açikgöz
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2015
  • 卷号:2015
  • 期号:1
  • 页码:40
  • DOI:10.1186/s13662-015-0375-0
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this article, we investigate the existence of a solution arising from the following fractional q-difference boundary value problem by using the p-Laplacian operator: D q γ ( ϕ p ( D q δ y ( t ) ) ) + f ( t , y ( t ) ) = 0 $D_{q}^{\gamma}(\phi_{p}(D_{q}^{\delta}y(t)))+f(t,y(t))=0$ ( 0 < t < 1 $0< t<1$ ; 0 < γ < 1 $0<\gamma<1$ ; 3 < δ < 4 $3<\delta<4$ ), y ( 0 ) = ( D q y ) ( 0 ) = ( D q 2 y ) ( 0 ) = 0 $y(0)=(D_{q}y)(0)=(D_{q}^,y)(0) =0$ , a 1 ( D q y ) ( 1 ) + a 2 ( D q 2 y ) ( 1 ) = 0 $a_)(D_{q}y)(1)+a_,(D_{q}^,y)(1)=0$ , a 1 + a 2 ≠ 0 $a_) +\vert a_,\vert \neq0$ , D 0 + γ y ( t ) t = 0 = 0 $D_{0+}^{\gamma}y(t) _{t=0}=0$ . We make use of such a fractional q-difference boundary value problem in order to show the existence and uniqueness of positive and nondecreasing solutions by means of a familiar fixed point theorem.
  • 关键词:positive solutions ; fixed point theorem ; fractional q -difference equation ; p -Laplacian operator
国家哲学社会科学文献中心版权所有