摘要:Memristive oscillator systems are common models for many problems in physics, engineering, and systems biology. This paper presents a convergence analysis of two types of algorithms for solving a fourth-order memristive oscillator system. For the first algorithm, a parallel algorithm, a limiting state of the iterate sequence generated by a Jacobi iterative scheme and the Euler polygonal method, is a solution of the system under some weaker conditions. With the second algorithm, a partial difference method, which is based on the partial difference concept and exponential convergence, is also presented. The proposed algorithms in this paper can be applied to general nonlinear hybrid systems.