摘要:This paper investigates the pinning synchronization analysis of linearly coupled reaction-diffusion neural networks (RDNNs) with unknown time-varying coupling strengths and unknown time-varying delay. By constructing a Lyapunov-Krasovskii-like composite energy functional (CEF) and applying the well-known LaSalle’s invariance principle, an adaptive learning control is designed to guarantee the asymptotic convergence of the synchronization error, several sufficient conditions of the synchronization are derived. Compared with the existing results, the update laws do not need the information of the characteristics of the identical node and the coupling matrices. An example shows the proposed theoretical result is feasible and effective.