摘要:In this paper, the sampled-data state estimation is investigated for a class of neural networks of neutral type. By employing a suitable Lyapunov functional, a delay-dependent criterion is established to guarantee the existence of the sampled-data estimator. The estimator gain matrix can be obtained by solving linear matrix inequalities (LMIs). A numerical example is given to show the effectiveness of the proposed method.
关键词:neural network ; sampled-data ; state estimation ; neutral type ; LMIs