摘要:In this paper, we will use the Krasnosel’skii fixed point theorem to investigate a discrete fractional boundary value problem of the form − Δ ν y ( t ) = λ h ( t + ν − 1 ) f ( y ( t + ν − 1 ) ) , y ( ν − 2 ) = Ψ ( y ) , y ( ν + b ) = Φ ( y ) , where 1 < ν ⩽ 2 , t ∈ [ 0 , b ] N 0 , f : [ 0 , ∞ ) → [ 0 , ∞ ) is a continuous function, h : [ ν − 1 , ν + b − 1 ] N ν − 1 → [ 0 , ∞ ) , Ψ , Φ : R b + 3 → R are given functionals, where Ψ, Φ are linear functionals, and λ is a positive parameter. MSC:26A33, 39A05, 39A12.