首页    期刊浏览 2025年08月08日 星期五
登录注册

文章基本信息

  • 标题:A general method for studying quadratic perturbations of the third-order Lyness difference equation
  • 本地全文:下载
  • 作者:Guifeng Deng ; Qiuying Lu ; Nianzu Liu
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2013
  • 卷号:2013
  • 期号:1
  • 页码:193
  • DOI:10.1186/1687-1847-2013-193
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper studies the difference equation x n + 3 x n = a + x n + 1 + x n + 2 + γ x n 2 , where a and γ are arbitrary positive real numbers and the initial values x 0 , x 1 , x 2 > 0 . It is known that for γ = 0 the above equation is the third-order Lyness’ one, studied in several papers. Using an extension of the quasi-Lyapunov method, we prove that for 0 < γ < 1 the sequences generated by the perturbed third-order Lyness equation are globally asymptotically stable. Moreover, we show that if γ ≥ 1 all solutions of it converge to +∞. Therefore, the values 0 and 1 are two bifurcation points for the equation containing the parameter γ. MSC:39A11, 39A20.
  • 关键词:difference equation ; quadratic perturbations ; bifurcation point ; first integral ; Lyapunov function ; global asymptotic stability
国家哲学社会科学文献中心版权所有