首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Forced oscillation of certain fractional differential equations
  • 本地全文:下载
  • 作者:Da-Xue Chen ; Pei-Xin Qu ; Yong-Hong Lan
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2013
  • 卷号:2013
  • 期号:1
  • 页码:125
  • DOI:10.1186/1687-1847-2013-125
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The paper deals with the forced oscillation of the fractional differential equation ( D a q x ) ( t ) + f 1 ( t , x ( t ) ) = v ( t ) + f 2 ( t , x ( t ) ) for t > a ≥ 0 with the initial conditions ( D a q − k x ) ( a ) = b k ( k = 1 , 2 , … , m − 1 ) and lim t → a + ( I a m − q x ) ( t ) = b m , where D a q x is the Riemann-Liouville fractional derivative of order q of x, m − 1 < q ≤ m , m ≥ 1 is an integer, I a m − q x is the Riemann-Liouville fractional integral of order m − q of x, and b k ( k = 1 , 2 , … , m ) are/is constants/constant. We obtain some oscillation theorems for the equation by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying Young’s inequality. We also establish some new oscillation criteria for the equation when the Riemann-Liouville fractional operator is replaced by the Caputo fractional operator. The results obtained here improve and extend some existing results. An example is given to illustrate our theoretical results. MSC:34A08, 34C10.
  • 关键词:forced oscillation ; fractional derivative ; fractional differential equation
国家哲学社会科学文献中心版权所有