首页    期刊浏览 2025年05月24日 星期六
登录注册

文章基本信息

  • 标题:Bifurcation of limit cycles from a hyper-elliptic Hamiltonian system with a double heteroclinic loops
  • 本地全文:下载
  • 作者:Xianbo Sun
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2012
  • 卷号:2012
  • 期号:1
  • 页码:224
  • DOI:10.1186/1687-1847-2012-224
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this article, we consider the Liénard system of the form x ˙ = y , y ˙ = x ( x − 1 ) ( x + 1 ) ( x 2 − 3 ) + ε ( α + β x 2 + γ x 4 ) y with 0 < ε ≪ 1 , a, b and c are real bounded parameters. We prove that the least upper bound of the number of isolated zeros of the corresponding Abelian integral I ( h ) = ∮ Γ h ( α + β x 2 + γ x 4 ) y d x is four (counting the multiplicity). This implies that the number of limit cycles that bifurcated from periodic orbits of the unperturbed system for ε = 0 is less than or equal to four. MSC:34C05, 34C07, 34C08.
  • 关键词:limit cycle ; Liénard system ; Chebyshev system ; heteroclinic loops ; bifurcation
国家哲学社会科学文献中心版权所有