首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Architecture design for a multi-sensor information fusion processor
  • 本地全文:下载
  • 作者:Catherine Olivia Sereati ; Arwin Datumaya Wahyudi Sumari ; Trio Adiono
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2019
  • 卷号:17
  • 期号:1
  • 页码:362-369
  • DOI:10.12928/telkomnika.v17i1.10180
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:This paper discusses the design of the architecture of an information fusion processor. This processor emulates the way of human thinking, namely by drawing conclusions from the obtained collection of information. Architecture design for this processor is based on Knowledge Growing System (KGS) algorithm. KGS is a novelty in Artificial Intelligence field. Compared to other AI methods, KGS focuses on the observation of the process of the knowledge growth within human brain based on information received from the surrounding environment. By using KGS algorithm, this processor works by receiving inputs from a set of sensors and possible hypotheses obtained after the processing of the information. The processor generates a value which is called as Degree of Certainty (DoC), which show the most possible hypothesis among all alternative ones. The Processor Elements which are used to perform KGS algorithm is designed based on systolic array architecture. The design of this processor is realized with VHSIC Hardware Design Language (VHDL) and synthesized by using FPGA Quartus II.13.1. The results show that the data path which has been design is able to perform the mechanism of KGS computation.
  • 其他摘要:This paper discusses the design of the architecture of an information fusion processor. This processor emulates the way of human thinking, namely by drawing conclusions from the obtained collection of information. Architecture design for this processor is based on Knowledge Growing System (KGS) algorithm. KGS is a novelty in Artificial Intelligence field. Compared to other AI methods, KGS focuses on the observation of the process of the knowledge growth within human brain based on information received from the surrounding environment. By using KGS algorithm, this processor works by receiving inputs from a set of sensors and possible hypotheses obtained after the processing of the information. The processor generates a value which is called as Degree of Certainty (DoC), which show the most possible hypothesis among all alternative ones. The Processor Elements which are used to perform KGS algorithm is designed based on systolic array architecture. The design of this processor is realized with VHSIC Hardware Design Language (VHDL) and synthesized by using FPGA Quartus II.13.1. The results show that the data path which has been design is able to perform the mechanism of KGS computation.
  • 关键词:artificial intelligence;information fusion;knowledge growing system;processor design;VHDL
国家哲学社会科学文献中心版权所有