期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2016
卷号:13
期号:6
DOI:10.1177/1729881416678139
出版社:SAGE Publications
摘要:Traditional methods and theories on synthesizing parallel mechanisms are not applicable to related researches on hybrid mechanisms, thus hampering the design of innovative coupled mechanisms. Polyhedrons with attractive appearance and particular geometrical construction provide many choices for coupled inventions. A novel mechanism with one translational degree of freedom based on a regular triangular bipyramid is proposed in this article. First, the basic equivalent geometrical model is spliced with new-designed components substituting for vertexes and edges by revolution joints (R-pairs) only. The expected motion for the basic coupled model can be achieved by adding links to modify the constraint sets and arrange spatial allocation of an elementary loop based on the screw theory. Then, the mobility of one branch is calculated to investigate the movability of the novel structure, and a Denavit–Hartenberg (D-H) model with properties of symmetry is implemented to investigate the inverse kinematic analysis. Furthermore, a numerical example is given to verify the correctness of analysis results and related motion simulation is conducted to illustrate the potential application of the proposed novel system as an executing manipulator for mobile robots.