首页    期刊浏览 2025年06月13日 星期五
登录注册

文章基本信息

  • 标题:Neural Random Forests
  • 本地全文:下载
  • 作者:Gérard Biau ; Gérard Biau ; Erwan Scornet
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2018
  • 页码:1-40
  • DOI:10.1007/s13171-018-0133-y
  • 出版社:Indian Statistical Institute
  • 摘要:Given an ensemble of randomized regression trees, it is possible to restructure them as a collection of multilayered neural networks with particular connection weights. Following this principle, we reformulate the random forest method of Breiman ( 2001 ) into a neural network setting, and in turn propose two new hybrid procedures that we call neural random forests. Both predictors exploit prior knowledge of regression trees for their architecture, have less parameters to tune than standard networks, and less restrictions on the geometry of the decision boundaries than trees. Consistency results are proved, and substantial numerical evidence is provided on both synthetic and real data sets to assess the excellent performance of our methods in a large variety of prediction problems..
  • 关键词:Random forests ; Neural networks ; Ensemble methods ; Randomization ; Sparse networks.
国家哲学社会科学文献中心版权所有