首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Compressed Covariance Estimation with Automated Dimension Learning
  • 本地全文:下载
  • 作者:Gautam Sabnis ; Gautam Sabnis ; Debdeep Pati
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2018
  • 页码:1-16
  • DOI:10.1007/s13171-018-0134-x
  • 出版社:Indian Statistical Institute
  • 摘要:We propose a method for estimating a covariance matrix that can be represented as a sum of a low-rank matrix and a diagonal matrix. The proposed method compresses high-dimensional data, computes the sample covariance in the compressed space, and lifts it back to the ambient space via a decompression operation. A salient feature of our approach relative to existing literature on combining sparsity and low-rank structures in covariance matrix estimation is that we do not require the low-rank component to be sparse. A principled framework for estimating the compressed dimension using Stein’s Unbiased Risk Estimation theory is demonstrated. Experimental simulation results demonstrate the efficacy and scalability of our proposed approach..
  • 关键词:Compressed sensing ; Dimension reduction ; Low;rank ; Factor model ; Spiked covariance models ; SURE
国家哲学社会科学文献中心版权所有