首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Generalized Autoregressive Score Models in R: The GAS Package
  • 本地全文:下载
  • 作者:David Ardia ; Kris Boudt ; Leopoldo Catania
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2019
  • 卷号:88
  • 期号:1
  • 页码:1-28
  • DOI:10.18637/jss.v088.i06
  • 出版社:University of California, Los Angeles
  • 摘要:This paper presents the R package GAS for the analysis of time series under the generalized autoregressive score (GAS) framework of Creal, Koopman, and Lucas (2013) and Harvey (2013). The distinctive feature of the GAS approach is the use of the score function as the driver of time-variation in the parameters of non-linear models. The GAS package provides functions to simulate univariate and multivariate GAS processes, to estimate the GAS parameters and to make time series forecasts. We illustrate the use of the GAS package with a detailed case study on estimating the time-varying conditional densities of financial asset returns.
  • 关键词:GAS; time series models; score models; dynamic conditional score; R software.
  • 其他关键词:GAS;time series models;score models;dynamic conditional score;R software
国家哲学社会科学文献中心版权所有