首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:MTPmle: A SAS Macro and Stata Programs for Marginalized Inference in Semi-Continuous Data
  • 本地全文:下载
  • 作者:Delia C. Voronca ; Mulugeta Gebregziabher ; Valerie Durkalski-Mauldin
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2018
  • 卷号:87
  • 期号:1
  • 页码:1-24
  • DOI:10.18637/jss.v087.i06
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:We develop a SAS macro and equivalent Stata programs that provide marginalized inference for semi-continuous data using a maximum likelihood approach. These software extensions are based on recently developed methods for marginalized two-part (MTP) models. Both the SAS and Stata extensions can fit simple MTP models for cross-sectional semi-continuous data. In addition, the SAS macro can fit random intercept models for longitudinal or clustered data, whereas the Stata programs can fit MTP models that account for subject level heteroscedasticity and for a complex survey design. Differences and similarities between the two software extensions are highlighted to provide a comparative picture of the available options for estimation, inclusion of random effects, convergence diagnosis, and graphical display. We provide detailed programming syntax, simulated and real data examples to facilitate the implementation of the MTP models for both SAS and Stata software users.
  • 其他关键词:semi-continuous;marginalized two-part models;generalized gamma;log skew normal;complex survey design
国家哲学社会科学文献中心版权所有