首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Tools for causal inference from cross-sectional innovation surveys with continuous or discrete variables: Theory and applications
  • 本地全文:下载
  • 作者:Alex Coad
  • 期刊名称:Cuadernos de Economía
  • 印刷版ISSN:2248-4337
  • 出版年度:2018
  • 卷号:37
  • 期号:75
  • 页码:779-808
  • DOI:10.15446/cuad.econ.v37n75.69832
  • 语种:English
  • 出版社:Universidad Nacional de Colombia - Facultad de Ciencias Económicas
  • 摘要:This paper presents a new statistical toolkit by applying three techniques for data-driven causal inference from the machine learning community that are little-known among economists and innovation scholars: a conditional independencebased approach, additive noise models, and non-algorithmic inference by hand. We include three applications to CIS data to investigate public funding schemes for R&D investment, information sources for innovation, and innovation expenditures and firm growth. Preliminary results provide causal interpretations of some previously-observed correlations. Our statistical 'toolkit' could be a useful complement to existing techniques.
  • 关键词:Palabras clave (en_US) Causal inference; innovation surveys; machine learning; additive noise models; directed acyclic graphs
国家哲学社会科学文献中心版权所有