首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Doc2Vec &Naïve Bayes: Learners’ Cognitive Presence Assessment through Asynchronous Online Discussion TQ Transcripts
  • 本地全文:下载
  • 作者:Hind Hayati ; Abdessamad Chanaa ; Mohammed Khalidi Idrissi
  • 期刊名称:International Journal of Emerging Technologies in Learning (iJET)
  • 印刷版ISSN:1863-0383
  • 出版年度:2019
  • 卷号:14
  • 期号:08
  • 页码:70-81
  • DOI:10.3991/ijet.v14i08.9964
  • 出版社:Kassel University Press
  • 摘要:Due to the lack of face to face interaction in online learning environment, this article aims essentially to give tutors the opportunity to understand and analyze learners’ cognitive behavior. In this perspective, we propose an automatic system to assess learners’ cognitive presence regarding their social interactions within synchronous online discussions. Combining Natural Language Preprocessing, Doc2Vec document embedding method and machine learning techniques; we first make some transformations and preprocessing to the given transcripts, then we apply Doc2Vec method to represent each message as a vector that will be concatenated with LIWC and context features. The vectors are input data of Naïve Bayes algorithm; a machine learning method; that aims to classify transcripts according to cognitive presence categories.
  • 关键词:e-learning;asynchronous online discussion;Community of Inquiry;cognitive presence;text classification;doc2vec;machine learning;naïve Bayes;NLP;LIWC
国家哲学社会科学文献中心版权所有