期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:12
页码:5775-5784
DOI:10.1073/pnas.1820156116
出版社:The National Academy of Sciences of the United States of America
摘要:Close appositions between the endoplasmic reticulum (ER) and the plasma membrane (PM) are a general feature of all cells and are abundant in neurons. A function of these appositions is lipid transport between the two adjacent bilayers via tethering proteins that also contain lipid transport modules. However, little is known about the properties and dynamics of these proteins in neurons. Here we focused on TMEM24/C2CD2L, an ER-localized SMP domain containing phospholipid transporter expressed at high levels in the brain, previously shown to be a component of ER–PM contacts in pancreatic β-cells. TMEM24 is enriched in neurons versus glial cells and its levels increase in parallel with neuronal differentiation. It populates ER–PM contacts in resting neurons, but elevations of cytosolic Ca2+ mediated by experimental manipulations or spontaneous activity induce its transient redistribution throughout the entire ER. Dissociation of TMEM24 from the plasma membrane is mediated by phosphorylation of an array of sites in the C-terminal region of the protein. These sites are only partially conserved in C2CD2, the paralogue of TMEM24 primarily expressed in nonneuronal tissues, which correspondingly display a much lower sensitivity to Ca2+ elevations. ER–PM contacts in neurons are also sites where Kv2 (the major delayed rectifier K+ channels in brain) and other PM and ER ion channels are concentrated, raising the possibility of a regulatory feedback mechanism between neuronal excitability and lipid exchange between the ER and the PM.