首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:Early lineage specification defines alveolar epithelial ontogeny in the murine lung
  • 本地全文:下载
  • 作者:David B. Frank ; Ian J. Penkala ; Jarod A. Zepp
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:10
  • 页码:4362-4371
  • DOI:10.1073/pnas.1813952116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:During the stepwise specification and differentiation of tissue-specific multipotent progenitors, lineage-specific transcriptional networks are activated or repressed to orchestrate cell specification. The gas-exchange niche in the lung contains two major epithelial cell types, alveolar type 1 (AT1) and AT2 cells, and the timing of lineage specification of these cells is critical for the correct formation of this niche and postnatal survival. Integrating cell-specific lineage tracing studies, spatially specific mRNA transcript and protein expression, and single-cell RNA-sequencing analysis, we demonstrate that specification of alveolar epithelial cell fate begins concomitantly with the proximal–distal specification of epithelial progenitors and branching morphogenesis earlier than previously appreciated. By using a newly developed dual-lineage tracing system, we show that bipotent alveolar cells that give rise to AT1 and AT2 cells are a minor contributor to the alveolar epithelial population. Furthermore, single-cell assessment of the transcriptome identifies specified AT1 and AT2 progenitors rather than bipotent cells during sacculation. These data reveal a paradigm of organ formation whereby lineage specification occurs during the nascent stages of development coincident with broad tissue-patterning processes, including axial patterning of the endoderm and branching morphogenesis.
  • 关键词:lung development ; alveolar epithelium ; lineage fate ; single-cell RNA sequencing
国家哲学社会科学文献中心版权所有