摘要:Se simuló con un modelo de trayectoria de partículas el transporte y la agregación de sedimentos finos en un canal fluvial, gobernados por sus tres procesos básicos: difusión Browniana, tensiones de corte del flujo y sedimentación diferencial. La velocidad de sedimentación fue calculada con un modelo de floculación fundamentado en la teoría de agregación de partículas dispersas. Los coeficientes de la tasa de remoción de sólidos se relacionaron con las funciones de frecuencia de colisión respectivas de cada mecanismo y una función de tiempo de sedimentación de cada floco. Los modelos de partículas están incluidos en la categoría de los métodos Lagrangeanos, donde el transporte de contaminante disuelto es disperso en el escurrimiento como consecuencia del movimiento aleatorio de un gran número de partículas discretas y pasivas. Están libres tanto de oscilaciones como de difusión numérica y por tanto de concentraciones negativas y de la pérdida de masa, problemas frecuentemente encontrados en los tradicionales métodos en elementos y diferencias finitas cuando el transporte está dominado por la advección. El modelo fue aplicado a un canal fluvial ligado a un estuario con una marea semidiurna, calculándose la velocidad de sedimentación, diámetro de flocos, concentraciones de sedimentos, erosión y depositación.
其他摘要:Se simuló con un modelo de trayectoria de partículas el transporte y la agregación de sedimentos finos en un canal fluvial, gobernados por sus tres procesos básicos: difusión Browniana, tensiones de corte del flujo y sedimentación diferencial. La velocidad de sedimentación fue calculada con un modelo de floculación fundamentado en la teoría de agregación de partículas dispersas. Los coeficientes de la tasa de remoción de sólidos se relacionaron con las funciones de frecuencia de colisión respectivas de cada mecanismo y una función de tiempo de sedimentación de cada floco. Los modelos de partículas están incluidos en la categoría de los métodos Lagrangeanos, donde el transporte de contaminante disuelto es disperso en el escurrimiento como consecuencia del movimiento aleatorio de un gran número de partículas discretas y pasivas. Están libres tanto de oscilaciones como de difusión numérica y por tanto de concentraciones negativas y de la pérdida de masa, problemas frecuentemente encontrados en los tradicionales métodos en elementos y diferencias finitas cuando el transporte está dominado por la advección. El modelo fue aplicado a un canal fluvial ligado a un estuario con una marea semidiurna, calculándose la velocidad de sedimentación, diámetro de flocos, concentraciones de sedimentos, erosión y depositación.