首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Character-Based Machine Learning vs. Language Modeling for Diacritics Restoration
  • 本地全文:下载
  • 作者:Jurgita Kapočiūtė-Dzikienė ; Andrius Davidsonas ; Aušra Vidugirienė
  • 期刊名称:Public Policy And Administration
  • 印刷版ISSN:2029-2872
  • 出版年度:2017
  • 卷号:46
  • 期号:4
  • 页码:508-520
  • DOI:10.5755/j01.itc.46.4.18066
  • 语种:English
  • 出版社:Kaunas University of Technology
  • 摘要:In this research we compare two approaches, in particular, character-based machine learning and language-modeling and offer the best solution for the diacritization problem solving. Parameters of tested approaches (i.e., a huge variety of feature types for the character-based method and a value n for the n-gram language-modeling method) were tuned to achieve the highest possible accuracy. Despite the main focus is on the Lithuanian language, we posit that obtained findings can also be applied to other, similar (Latvian or Slavic) languages. During experiments we measured the performance of approaches on 10 domains (including normative texts and non-normative Internet comments). The best results reaching ~99.5% and ~98.4% of the accuracy on characters and words, respectively, were achieved with the tri-gram language modeling method. It outperformed the character-based machine learning approach with an optimal composed feature set by ~1.4% and ~3.8% of the accuracy on characters and words, respectively.
  • 关键词:diacritics restoration;character-based machine learning and language modeling approaches;the Lithuanian language
国家哲学社会科学文献中心版权所有