首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A Clustering Algorithm for Key Frame Extraction Based on Density Peak
  • 本地全文:下载
  • 作者:Hong Zhao ; Tao Wang ; Xiangyan Zeng
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2018
  • 卷号:06
  • 期号:12
  • 页码:118-128
  • DOI:10.4236/jcc.2018.612012
  • 出版社:Scientific Research Publishing
  • 摘要:Aiming at the problem of video key frame extraction, a density peak clustering algorithm is proposed, which uses the HSV histogram to transform high-dimensional abstract video image data into quantifiable low-dimensional data, and reduces the computational complexity while capturing image features. On this basis, the density peak clustering algorithm is used to cluster these low-dimensional data and find the cluster centers. Combining the clustering results, the final key frames are obtained. A large number of key frame extraction experiments for different types of videos show that the algorithm can extract different number of key frames by combining video content, overcome the shortcoming of traditional key frame extraction algorithm which can only extract a fixed number of key frames, and the extracted key frames can represent the main content of video accurately.
  • 关键词:Key Frame;Clustering Algorithm;HSV Color Histogram
国家哲学社会科学文献中心版权所有