期刊名称:International Journal of Image Processing (IJIP)
电子版ISSN:1985-2304
出版年度:2019
卷号:13
期号:1
页码:1-12
出版社:Computer Science Journals
摘要:Millions of images are being uploaded on the internet without proper description (tags) about these images. Image retrieval based on image tagging approach is much faster than Content Based Image Retrieval (CBIR) approach but requires an entire image collection to be manually annotated with proper tags. This requires a lot of human efforts and time, and hence not feasible for huge image collections. An efficient method is necessary for automatically tagging such a vast collection of images. We propose a novel image tagging method, which automatically tags any image with its concept. Our unique approach to solve this problem involves manual tagging of small exemplar image set and low-level feature extraction of all the images, hence called a hybrid approach. This approach can be used to tag a large image dataset from manually tagged small image dataset. The experiments are performed on Wang's Corel Dataset. In the comparative study, it is found that, the proposed concept detection system based on this novel tagging approach has much less time complexity of classification step, and results in significant improvement in accuracy as compared to the other tagging approaches found in the literature. This approach may be used as faster alternative to the typical Content Based Image Retrieval (CBIR) approach for domain specific applications.