首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System
  • 本地全文:下载
  • 作者:Jian Kui Feng ; Jing Jin ; Ian Daly
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-11
  • DOI:10.1155/2019/8068357
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Background. Due to the redundant information contained in multichannel electroencephalogram (EEG) signals, the classification accuracy of brain-computer interface (BCI) systems may deteriorate to a large extent. Channel selection methods can help to remove task-independent electroencephalogram (EEG) signals and hence improve the performance of BCI systems. However, in different frequency bands, brain areas associated with motor imagery are not exactly the same, which will result in the inability of traditional channel selection methods to extract effective EEG features. New Method. To address the above problem, this paper proposes a novel method based on common spatial pattern- (CSP-) rank channel selection for multifrequency band EEG (CSP-R-MF). It combines the multiband signal decomposition filtering and the CSP-rank channel selection methods to select significant channels, and then linear discriminant analysis (LDA) was used to calculate the classification accuracy. Results. The results showed that our proposed CSP-R-MF method could significantly improve the average classification accuracy compared with the CSP-rank channel selection method.
国家哲学社会科学文献中心版权所有