首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:A Machine Learning Approach for Predicting Nicotine Dependence
  • 本地全文:下载
  • 作者:Mohammad Kharabsheh ; Omar Meqdadi ; Mohammad Alabed
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2019
  • 卷号:10
  • 期号:3
  • 页码:179-184
  • DOI:10.14569/IJACSA.2019.0100323
  • 出版社:Science and Information Society (SAI)
  • 摘要:An examination of the ability of machine learning methodologies in classifying women Waterpipe (WP) smoker’s level of nicotine dependence is proposed in this work. In this study, we developed a classifier that predicts the level of nicotine dependence for WP tobacco female smokers using a set of novel features relevant to smokers including age, residency, and educational level. The evaluation results show that our approach achieves a recall of 82% when applied on a dataset of female WP smokers in Jordan.
  • 关键词:Machine learning; nicotine dependency; Women; Waterpipe; classification
国家哲学社会科学文献中心版权所有