首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Efficient Load Balancing in Cloud Computing using Multi-Layered Mamdani Fuzzy Inference Expert System
  • 本地全文:下载
  • 作者:Naila Samar Naz ; Sagheer Abbas ; Muhammad Adnan Khan
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2019
  • 卷号:10
  • 期号:3
  • 页码:569-577
  • DOI:10.14569/IJACSA.2019.0100373
  • 出版社:Science and Information Society (SAI)
  • 摘要:In this article, a new Multi-Layered mamdani fuzzy inference system (ML-MFIS) is propound for the Assessment of Efficient Load Balancing (ELB). The proposed ELB-ML-MFIS expert System can categorise the level of ELB in Cloud computing into Excellent, Normal or Low. ELB-ML-MFIS Expert System for ELB in cloud computing is developed under the guidelines from the Microsoft Organization and Pakistan’s Punjab Information Technology Board (PITB) Standard. ELB-ML-MFIS Expert System uses input Cloud Computing parameters such as Data-Center, Virtual-Machine, and Inter –of-Things (IOT) for different layers. This article also analyses the intensities of the Parametres and the results achieved by using the Proposed ELB-ML-MFIS Expert System. All these parameters and results are discussed with the experts of Pakistan’s Punjab Information Technology Board (PITB), Lahore. The accuracy of the proposed ELB-ML-MFIS Expert System is more accurate as compared to other approaches used for it.
  • 关键词:PITB; IOT; Virtual-Machine; Data-center; ML; ELB; MFIS
国家哲学社会科学文献中心版权所有