期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:21
页码:10258-10263
DOI:10.1073/pnas.1821269116
出版社:The National Academy of Sciences of the United States of America
摘要:The ability to move fluids at the microscale is at the core of many scientific and technological advancements. Despite its importance, microscale flow control remains highly limited by the use of discrete channels and mechanical valves, and relies on fixed geometries. Here we present an alternative mechanism that leverages localized field-effect electroosmosis to create dynamic flow patterns, allowing fluid manipulation without the use of physical walls. We control a set of gate electrodes embedded in the floor of a fluidic chamber using an ac voltage in sync with an external electric field, creating nonuniform electroosmotic flow distributions. These give rise to a pressure field that drives the flow throughout the chamber. We demonstrate a range of unique flow patterns that can be achieved, including regions of recirculating flow surrounded by quiescent fluid and volumes of complete stagnation within a moving fluid. We also demonstrate the interaction of multiple gate electrodes with an externally generated flow field, allowing spatial modulation of streamlines in real time. Furthermore, we provide a characterization of the system in terms of time response and dielectric breakdown, as well as engineering guidelines for its robust design and operation. We believe that the ability to create tailored microscale flow using solid-state actuation will open the door to entirely new on-chip functionalities.