首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets
  • 本地全文:下载
  • 作者:Yingxin Lin ; Yingxin Lin ; Shila Ghazanfar
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:20
  • 页码:9775-9784
  • DOI:10.1073/pnas.1820006116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Concerted examination of multiple collections of single-cell RNA sequencing (RNA-seq) data promises further biological insights that cannot be uncovered with individual datasets. Here we present scMerge, an algorithm that integrates multiple single-cell RNA-seq datasets using factor analysis of stably expressed genes and pseudoreplicates across datasets. Using a large collection of public datasets, we benchmark scMerge against published methods and demonstrate that it consistently provides improved cell type separation by removing unwanted factors; scMerge can also enhance biological discovery through robust data integration, which we show through the inference of development trajectory in a liver dataset collection.
  • 关键词:single-cell RNA-seq data ; data integration ; factor analysis ; normalization ; pseudoreplications
国家哲学社会科学文献中心版权所有