期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:19
页码:9610-9615
DOI:10.1073/pnas.1706012116
出版社:The National Academy of Sciences of the United States of America
摘要:The connections between neurons determine the computations performed by both artificial and biological neural networks. Recently, we have proposed SYNSeq, a method for converting the connectivity of a biological network into a form that can exploit the tremendous efficiencies of high-throughput DNA sequencing. In SYNSeq, each neuron is tagged with a random sequence of DNA—a “barcode”—and synapses are represented as barcode pairs. SYNSeq addresses the analysis problem, reducing a network into a suspension of barcode pairs. Here, we formulate a complementary synthesis problem: How can the suspension of barcode pairs be used to “clone” or copy the network back into an uninitialized tabula rasa network? Although this synthesis problem might be expected to be computationally intractable, we find that, surprisingly, this problem can be solved efficiently, using only neuron-local information. We present the “one-barcode–one-cell” (OBOC) algorithm, which forces all barcodes of a given sequence to coalesce into the same neuron, and show that it converges in a number of steps that is a power law of the network size. Rapid and reliable network cloning with single-synapse precision is thus theoretically possible.
关键词:neural networks ; connectomics ; DNA barcodes ; neural development