首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning
  • 本地全文:下载
  • 作者:Somayyeh Soltanian-Zadeh ; Kaan Sahingur ; Sarah Blau
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:17
  • 页码:8554-8563
  • DOI:10.1073/pnas.1812995116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.
  • 关键词:deep learning ; calcium imaging ; neuron segmentation ; two-photon microscopy ; open source
国家哲学社会科学文献中心版权所有