首页    期刊浏览 2025年07月02日 星期三
登录注册

文章基本信息

  • 标题:Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave
  • 本地全文:下载
  • 作者:Sophie Achard ; Irène Gannaz
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2019
  • 卷号:89
  • 期号:1
  • 页码:1-31
  • DOI:10.18637/jss.v089.i06
  • 出版社:University of California, Los Angeles
  • 摘要:Multivariate time series with long-dependence are observed in many applications such as finance, geophysics or neuroscience. Many packages provide estimation tools for univariate settings but few are addressing the problem of long-dependence estimation for multivariate settings. The package multiwave is providing efficient estimation procedures for multivariate time series. Two semi-parametric estimation methods of the long-memory exponents and long-run covariance matrix of time series are implemented. The first one is the Fourier-based estimation proposed by Shimotsu (2007) and the second one is a wavelet-based estimation described in Achard and Gannaz (2016). The objective of this paper is to provide an overview of the R package multiwave with its practical application perspectives.
  • 关键词:wavelets; multivariate time series; Whittle estimation; long-memory properties; long-run covariance; R.
  • 其他关键词:wavelets;multivariate time series;Whittle estimation;long-memory properties;long-run covariance;R
国家哲学社会科学文献中心版权所有