首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Hyperspectral Data Analysis in R: The hsdar Package
  • 本地全文:下载
  • 作者:Lukas W. Lehnert ; Hanna Meyer ; Wolfgang A. Obermeier
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2019
  • 卷号:89
  • 期号:1
  • 页码:1-23
  • DOI:10.18637/jss.v089.i12
  • 出版社:University of California, Los Angeles
  • 摘要:Hyperspectral remote sensing is a promising tool for a variety of applications including ecology, geology, analytical chemistry and medical research. This article presents the new hsdar package for R statistical software, which performs a variety of analysis steps taken during a typical hyperspectral remote sensing approach. The package introduces a new class for efficiently storing large hyperspectral data sets such as hyperspectral cubes within R. The package includes several important hyperspectral analysis tools such as continuum removal, normalized ratio indices and integrates two widely used radiation transfer models. In addition, the package provides methods to directly use the functionality of the caret package for machine learning tasks. Two case studies demonstrate the package's range of functionality: First, plant leaf chlorophyll content is estimated and second, cancer in the human larynx is detected from hyperspectral data.
  • 关键词:hyperspectral remote sensing; hyperspectral imaging; spectroscopy; continuum removal;
  • 其他关键词:hyperspectral remote sensing;hyperspectral imaging;spectroscopy;continuum removal;normalized ratio indices
国家哲学社会科学文献中心版权所有