首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Positive periodic solution for indefinite singular Liénard equation with p -Laplacian
  • 本地全文:下载
  • 作者:Tiantian Zhou ; Bo Du ; Haiqing Du
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-17
  • DOI:10.1186/s13662-019-2100-x
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The efficient conditions guaranteeing the existence of positive T-periodic solution to the p-Laplacian–Liénard equation ( ϕ p ( x ′ ( t ) ) ) ′ + f ( x ( t ) ) x ′ ( t ) + α 1 ( t ) g ( x ( t ) ) = α 2 ( t ) x μ ( t ) , $$\bigl(\phi _{p}\bigl(x'(t)\bigr) \bigr)'+f \bigl(x(t)\bigr)x'(t)+\alpha _)(t)g\bigl(x(t)\bigr)= \frac{ \alpha _,(t)}{x^{\mu }(t)}, $$ are established in this paper. Here ϕ p ( s ) = | s | p − 2 s $\phi _{p}(s)=|s|^{p-2}s$ , p > 1 $p>1$ , α 1 , α 2 ∈ L ( [ 0 , T ] , R ) $\alpha _),\alpha _,\in L([0,T],{R}) $ , f ∈ C ( R + , R ) $f\in C({R}_{+},{R})$ ( R + ${R} _{+}$ stands for positive real numbers) with a singularity at x = 0 $x=0$ , g ( x ) $g(x)$ is continuous on ( 0 ; + ∞ ) $(0;+\infty )$ , μ is a constant with μ > 0 $\mu >0$ , the signs of α 1 $\alpha _)$ and α 2 $\alpha _, $ are allowed to change. The approach is based on the continuation theorem for p-Laplacian-like nonlinear systems obtained by Manásevich and Mawhin in (J. Differ. Equ. 145:367–393, 1998).
  • 关键词:Singularity ; Continuation theorem ; Periodic solution
国家哲学社会科学文献中心版权所有