首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Near-Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits
  • 本地全文:下载
  • 作者:Suryajith Chillara ; Christian Engels ; Nutan Limaye
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2018
  • 卷号:2018
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We study the size blow-up that is necessary to convert an algebraic circuit of product-depth + 1 to one of product-depth in the multilinear setting.

    We show that for every positive = ( n ) = o ( log n log log n ) there is an explicit multilinear polynomial P ( ) on n variables that can be computed by a multilinear formula of product-depth + 1 and size O ( n ) , but not by any multilinear circuit of product-depth and size less than exp ( n (1 ) ) . This result is tight up to the constant implicit in the double exponent for all = o ( log n log log n )

    This strengthens a result of Raz and Yehudayoff (Computational Complexity 2009) who prove a quasipolynomial separation for constant-depth multilinear circuits, and a result of Kayal, Nair and Saha (STACS 2016) who give an exponential separation in the case = 1

    Our separating examples may be viewed as algebraic analogues of variants of the Graph Reachability problem studied by Chen, Oliveira, Servedio and Tan (STOC 2016), who used them to prove lower bounds for constant-depth Boolean circuits.

  • 关键词:depth separation ; lower bounds ; multilinear arithmetic formulas
国家哲学社会科学文献中心版权所有