首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Exponential Separation between Quantum Communication and Logarithm of Approximate Rank
  • 本地全文:下载
  • 作者:Makrand Sinha ; Ronald de Wolf
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2018
  • 卷号:2018
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    Chattopadhyay, Mande and Sherif (ECCC 2018) recently exhibited a total Boolean function, the sink function, that has polynomial approximate rank and polynomial randomized communication complexity. This gives an exponential separation between randomized communication complexity and logarithm of the approximate rank, refuting the log-approximate-rank conjecture. We show that even the quantum communication complexity of the sink function is polynomial, thus also refuting the quantum log-approximate-rank conjecture.

    Our lower bound is based on the fooling distribution method introduced by Rao and Sinha (ECCC 2015) for the classical case and extended by Anshu, Touchette, Yao and Yu (STOC 2017) for the quantum case. We also give a new proof of the classical lower bound using the fooling distribution method.

  • 关键词:Approximate rank; Logrank conjecture; Quantum communication; Fooling distribution
国家哲学社会科学文献中心版权所有