首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Polynomial-Time Random Oracles and Separating Complexity Classes
  • 本地全文:下载
  • 作者:John Hitchcock ; Adewale Sekoni ; Hadi Shafei
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2018
  • 卷号:2018
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    Bennett and Gill (1981) showed that P^A != NP^A != coNP^A for a random oracle A, with probability 1. We investigate whether this result extends to individual polynomial-time random oracles. We consider two notions of random oracles: p-random oracles in the sense of martingales and resource-bounded measure (Lutz, 1992; Ambos-Spies et al., 1997), and p-betting-game random oracles using the betting games generalization of resource-bounded measure (Buhrman et al., 2000). Every p-betting-game random oracle is also p-random; whether the two notions are equivalent is an open problem.

    (1) We first show that P^A != NP^A for every oracle A that is p-betting-game random.

    Ideally, we would extend (1) to p-random oracles. We show that answering this either way would imply an unrelativized complexity class separation:

    (2) If P^A != NP^A relative to every p-random oracle A, then BPP != EXP.

    (3) If P^A = NP^A relative to some p-random oracle A, then P != PSPACE.

    Rossman, Servedio, and Tan (2015) showed that the polynomial-time hierarchy is infinite relative to a random oracle, solving a longstanding open problem. We consider whether we can extend (1) to show that PHA is infinite relative to oracles A that are p-betting-game random. Showing that PHA separates at even its first level would also imply an unrelativized complexity class separation:

    (4) If NP^A != coNP^A for a p-betting-game measure 1 class of oracles A, then NP != EXP.

    (5) If PH^A is infinite relative to every p-random oracle A, then PH != EXP.

  • 关键词:random oracles ; Resource-bounded measure
国家哲学社会科学文献中心版权所有