首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:EPLL: An Image Denoising Method Using a Gaussian Mixture Model Learned on a Large Set of Patches
  • 本地全文:下载
  • 作者:Samuel Hurault ; Thibaud Ehret ; Pablo Arias
  • 期刊名称:Image Processing On Line
  • 电子版ISSN:2105-1232
  • 出版年度:2018
  • 卷号:8
  • 页码:465-489
  • DOI:10.5201/ipol.2018.242
  • 出版社:Image Processing On Line
  • 摘要:

    The Expected Patch Log-Likelihood method, introduced by Zoran and Weiss, allows for whole image restoration using a patch-based prior (in the likelihood sense) for which a maximum a-posteriori (MAP) estimate can be calculated. The prior used is a Gaussian mixture model whose parameters are learned from a dataset of natural images. This article presents a detailed implementation of the algorithm in the context of denoising of images contaminated with white additive Gaussian noise. In addition, two possible extensions of the algorithm to handle color images are compared.

国家哲学社会科学文献中心版权所有