摘要:An extremely rare alga, Aegagropila linnaei , is known for its beautiful spherical filamentous aggregations called Lake Ball (Marimo). It has long been a mystery in biology as to why this species forms 3D ball-like aggregations. This alga also forms two-dimensional mat-like aggregations. Here we show that forming ball-like aggregations is an adaptive strategy to increase biomass in the extremely limited environments suitable for growth of this alga. We estimate the maximum biomass attained by ball colonies and compare it to that attained by mat colonies. As a result, a ball colony can become larger in areal biomass than the mat colony. In the two large ball colonies studied so far, they actually have larger biomasses than the mat colonies. The uniqueness of Lake Balls in nature seems to be due to the rarity of such environmental conditions. This implies that the conservation of this alga is difficult, but important.