摘要:Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology.