摘要:Solution processing of earth-abundant Cu2ZnSn(S1-x,Sex)4 (CZTSSe) absorber materials is an attractive research area in the economical and large-scale deployment of photovoltaics. Here, a band-gap-graded CZTSSe thin-film solar cell with 7.1% efficiency was developed using non-toxic solvent-based ink without the involvement of complex particle synthesis, highly toxic solvents, or organic additives. Despite the high series resistance due to the presence of a thick Mo(S,Se)x layer and Zn(S,Se) aggregates, a high short-circuit current density (JSC) was generated. In addition, there was no significant difference in open circuit voltages (VOC) between CZTS (0.517 V) and CZTSSe (0.505–0.479 V) cells, despite a significant band gap change from 1.51 eV to 1.24 eV. The high JSC and less loss of VOC are attributed to the effect of band gap grading induced by Se grading in the CZTSSe absorber layer. Our environmentally benign ink approach will enable the realization of low-cost, large-area, high-efficiency thin-film solar cells.