Stimuli-response on hierarchically-structured surface wrinkles is required for advanced filtration, catalysis and sensing applications. Although conventional processes can form hierarchical surface wrinkles, incorporation of stimuli-responsive features has not been achieved, limiting the potential multi-scale functionality of wrinkles. Here, we demonstrate a novel process that can fabricate stimuli-responsive surface hierarchical structures on silica−polymer hybrid films through precisely controlled UV-polymerization and sol-gel condensation. Starting from uniform hybrid films, UV excitation of the film surface triggers the formation of micrometre-scale wrinkles with dual periodicity. Hierarchical nested wrinkle (NW) structures with controllable periodic lengths at discrete size scales of < 10 µm and > 23 µm show a shape-memory effect with changes in the surrounding humidity. Moreover, the individual responses of wrinkles with different periodicities can be controlled independently. As a proof-of-concept application, we demonstrate that the NW structures are an active size-selective adsorption/release surface for micrometre-sized particles.
.© 2012 Macmillan Publishers Limited. All rights reserved