Mechanically Interlocked molecules, such as catenanes and rotaxanes, are of great interest due to their fascinating structures and potential applications, while such molecules have been mainly restricted to comprising components of interlocked rings or polygons. The constructions of infinite polycatenanes and polyrotaxanes by discrete cages remain great challenge, and only two infinite polycatenanes fabricated by discrete cages have been reported so far, while the structures of polyrotaxanes and polypseudo-rotaxanes fabricated by discrete build units have not been documented to date. Herein we report the first example of a two-dimensional (2D) polypseudo-rotaxane fabricated by stool-like build units, the second example of a one-dimensional (1D) polycatenane, and the second example of a three-dimensional (3D) polycatenane, which were assemblied by discrete tetrahedral cages. The pores of dehydrated 3D polycatenane are dynamic, and display size-dependent adsorption/desorption behaviors of alcohols.
.© 2012 Macmillan Publishers Limited. All rights reserved